Bài 10 đường thẳng song song với một đường thẳng cho trước – Chương 1 Hình học SBT Toán 8 tập 1

Bài 10 đường thẳng song song với một đường thẳng cho trước – Chương 1 Hình học SBT Toán 8 tập 1

Câu 124 trang 95 Sách bài tập (SBT) Toán 8 tập 1

Cho đoạn thẳng AB. Kẻ tia Ax bất kì, lấy các điểm C, D, E sao cho AC = CD = DE. Qua C và D kẻ các đường thẳng song song với EB. Chứng minh rằng đoạn thẳng AB bị chia ra ba phần bằng nhau.

Giải:    

Bài 10 đường thẳng song song với một đường thẳng cho trước – Chương 1 Hình học SBT Toán 8 tập 1

Gọi giao điểm của các đường thẳng kẻ từ C và D song song với BE cắt AB tại M và N.

Ta có: AC = CD = DE (gt)

CM // DN // BE

Theo tính chất đường thẳng song song cách đều ta có: AM = MN = NB.

 


Câu 125 trang 95 Sách bài tập (SBT) Toán 8 tập 1

Cho góc vuông xOy, điểm A trên tia Oy. Điểm B di chuyển trên tia Ox. Gọi C là điểm đối xứng với A qua B. Điểm C di chuyển trên đường nào ?

Giải:

Bài 10 đường thẳng song song với một đường thẳng cho trước – Chương 1 Hình học SBT Toán 8 tập 1

Vì điểm C đối xứng với điểm A qua điểm B ⇒ BA = BC

Kẻ CH ⊥ Ox

Xét hai tam giác vuông AOB và CHB:

(widehat {AOB} = widehat {CHB} = {90^0})

BA = BC (chứng minh trên)

(widehat {ABO} = widehat {CBH}) (đối đỉnh)

Do đó: ∆ AOB = ∆ CHB (cạnh huyền, góc nhọn) ⇒ CH = AO

A, O cố định ⇒ OA không đổi nên CH không đổi.

C thay đổi cách Ox một khoảng bằng OA không đổi nên C chuyển động trên đường thẳng song song với Ox, cách Ox một khoảng OA.

Khi B trùng O thì C trùng với điểm K đối xứng với A qua điểm O.

Vậy C chuyển động trên tia Km // Ox, cách Ox một khoảng không đổi bằng OA.

 


Câu 126 trang 96 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC, điểm M di chuyển trên cạnh BC. Gọi I là trung điểm của AM. Điểm I di chuyển trên đường nào ?

Giải:        

Bài 10 đường thẳng song song với một đường thẳng cho trước – Chương 1 Hình học SBT Toán 8 tập 1

Kẻ AH ⊥ BC, IK ⊥ BC

⇒ AH // IK

Trong tam giác AHM ta có:

⇒ AI = IM (gt)

IK // AH (chứng minh trên)

Suy ra: IK là đường trung bình của ∆ AHM

⇒ IK = ({1 over 2})AH

∆ ABC cố định nên AH không thay đổi ⇒ IK = ({1 over 2})AH không đổi.

I thay đổi cách BC một khoảng bằng ({{AH} over 2}) không đổi nên I nằm trên đường thẳng song song với BC, cách BC một khoảng bằng({{AH} over 2}).

Khi M trùng với điểm B thì I trùng với P là trung điểm của AB.

Khi M trùng với điểm C thì I trùng với Q là trung điểm của AC.

Vậy khi M chuyển động trên cạnh BC của ∆ ABC thì trung điểm I của AM chuyển động trên đường trung bình PQ của ∆ ABC.

 


Câu 127 trang 96 Sách bài tập (SBT) Toán 8 tập 1

Cho tam giác ABC vuông tại A, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ M đến AB, AC.

a. So sánh các độ dài AM, DE.

b. Tìm vị trí của điểm M trên cạnh BC để DE có độ dài nhỏ nhất.

Giải:   

Bài 10 đường thẳng song song với một đường thẳng cho trước – Chương 1 Hình học SBT Toán 8 tập 1

a. Xét tứ giác ADME ta có:

(widehat A = {90^0}) (gt)

MD ⊥ AB (gt)

( Rightarrow widehat {MDA} = {90^0})

ME ⊥ AC (gt)

( Rightarrow widehat {MEA} = {90^0})

Suy ra: Tứ giác ADME là hình chữ nhật (vì có ba góc vuông)

⇒ AM = DE (tính chất hình chữ nhật)

b. Ta có: AH ⊥ BC nên AM ≥ AH. Dấu “=” xảy ra khi M trùng với H.

mà DE = AM (chứng minh trên)

Vậy DE có độ dài nhỏ nhất bằng AH khi M là chân đường vuông góc kẻ từ A đến BC.


 

Câu 128 trang 96 Sách bài tập (SBT) Toán 8 tập 1

Cho điểm A nằm ngoài đường thẳng d. Điểm M di chuyển trên đường thẳng d. Gọi B là điểm đối xứng với A qua M. Điểm B di chuyển trên đường nào ?

Giải:

Bài 10 đường thẳng song song với một đường thẳng cho trước – Chương 1 Hình học SBT Toán 8 tập 1

Kẻ  AK ⊥ d, BH ⊥ d

M thay đổi trên d, B đối xứng với A qua M nên AM = MB

Xét hai tam giác vuông AKM và BHM:

(widehat {AKM} = widehat {BHM} = {90^0})

AM = MB (chứng minh trên)

(widehat {AMK} = widehat {BMH}) (đối đỉnh)

Do đó: ∆ AKM = ∆ BHM (cạnh huyền, góc nhọn) ⇒ AK = BH

Điểm A cố định, đường thẳng d cố định nên AK không thay đổi

M thay đổi, B thay đổi cách đường thẳng d cố định một khoảng bằng AK không đổi nên B chuyển động trên đường thẳng xy song song với d một khoảng bằng AK.

 


Câu 129 trang 96 Sách bài tập (SBT) Toán 8 tập 1

Cho đoạn thẳng AB, điểm M di chuyển trên đoạn thẳng ấy. Vẽ về một phía của AB các tam giác đều AMD, BME. Trung điểm I của DE di chuyển trên đường nào ?

Giải:      

Bài 10 đường thẳng song song với một đường thẳng cho trước – Chương 1 Hình học SBT Toán 8 tập 1

Gọi giao điểm của AD và BE là C.

∆ ABC có: (widehat A = {60^0}) (vì ∆ ADM đều)

(widehat B = {60^0}) (vì ∆ BEM đều)

Suy ra: ∆ ABC đều, AC = AB = BC nên điểm C cố định

(widehat A = widehat {EMB} = {60^0})

⇒ ME // AC (vì có cặp góc đồng vị bằng nhau)

hay ME // DC

(widehat {DMA} = widehat B = {60^0})

⇒ MD // BC (vì có cặp góc đồng vị bằng nhau)

hay MD // EC

Tứ giác CDME là hình bình hành

I là trung điểm của DE nên I là trung điểm của CM

Kẻ CH ⊥ AB, IK ⊥ AB ⇒ IK // CH

Trong ∆ CHM ta có:

CI = IM

IK // CH

nên IK là đường trung bình của ∆ CHM ⇒ IK = ({1 over 2})CH

C cố định ⇒ CH không đổi ⇒ IK =({1 over 2})CH không thay đổi nên I chuyển động trên đường thẳng song song AB, cách AB một khoảng bằng ({1 over 2})CH.

Khi M trùng với A thì I trùng trung điểm P của AC.

Khi M trùng với B thì I trùng với trung điểm Q của BC.

Vậy khi M chuyển động trên đoạn thẳng AB thì I chuyển động trên đoạn PQ (P là trung điểm của AC, Q là trung điểm của BC)

 


Câu 130 trang 96 Sách bài tập (SBT) Toán 8 tập 1

Hình chữ nhật ABCD có cạnh AD bằng nửa đường chéo AC. Tính góc nhọn tạo bởi hai đường chéo.

Giải:  

Bài 10 đường thẳng song song với một đường thẳng cho trước – Chương 1 Hình học SBT Toán 8 tập 1

Gọi O là giao điểm của hai đường chéo AC và BD.

AC = BD (tính chất hình chữ nhật)

⇒ OA = OD = ({1 over 2})AC

AD = ({1 over 2})AC (gt)

Suy ra: OA = OD = AD

⇒ ∆ OAD đều

( Rightarrow widehat {AOD} = {60^0})

Câu 131 trang 96 Sách bài tập (SBT) Toán 8 tập 1

Dựng hình chữ nhật ABCD, biết đường chéo AC = 4cm, góc tạo bởi hai đường chéo bằng 100°.

Giải:    

Bài 10 đường thẳng song song với một đường thẳng cho trước – Chương 1 Hình học SBT Toán 8 tập 1

Cách dựng:

–            Dựng ∆ OAB biết OA = OB = 2cm.
(widehat {AOB} = {100^0})

–            Trên tia đối tia OA dựng điểm C sao cho OC = OA = 2cm

–            Trên tia đối tia OB dựng điểm D sao cho OD = OB = 2cm

Nối AD, BC, CD ta có hình chữ nhật ABCD cần dựng.

Chứng minh:

OA = OC, OB = OD nên tứ giác ABCD là hình bình hành

AC = BD = 4(cm) nên hình bình hành ABCD là hình chữ nhật

Lại có : (widehat {AOB} = {100^0})


Câu 10.1 trang 96 Sách bài tập (SBT) Toán 8 tập 1

Tập hợp giao điểm hai đường chéo của hình chữ nhật ABCD có A và B cố định là

A. Đường trung trực của AD;

B. Đường trung trực của AB;

C. Đường trung trực của BC;

D. Đường tròn (A; AB)

Hãy chọn phương án đúng.

Giải: 

Chọn B. Đường trung trực của AB. Đúng

 


Câu 10.2 trang 96 Sách bài tập (SBT) Toán 8 tập 1

Cho góc xOy cố định khác góc bẹt. Các điểm A và B theo thứ tự chuyển động trên các tia Ox và Oy sao cho OA = OB. Đường vuông góc với OA tại A và đường vuông góc với OB tại B cắt nhau ở M. Điểm M chuyển động trên đường nào ?

Giải:    

Bài 10 đường thẳng song song với một đường thẳng cho trước – Chương 1 Hình học SBT Toán 8 tập 1

Xét hai tam giác vuông MOA và MOB: (widehat {MAO} = widehat {MBO} = {90^0})

OA = OB (gt)

OM cạnh huyền chung

Do đó: ∆ MAO = ∆ MBO (cạnh huyền, cạnh góc vuông)

( Rightarrow widehat {AOM} = widehat {BOM})

A và B thay đổi, OA và OB luôn bằng nhau nên ∆ MAO và ∆ MBO luôn luôn bằng nhau do đó (widehat {AOM} = widehat {BOM})

Vậy khi A chuyển động trên Ox, B chuyển động trên Oy mà OA = OB thì điểm M chuyển động trên tia phân giác của góc xOy.

 


Câu 10.3 trang 96 Sách bài tập (SBT) Toán 8 tập 1

Xét các hình bình hành ABCD có cạnh AD cố định, cạnh AB = 2cm. Gọi I là giao điểm của AC và BD. Điểm I chuyển động trên đường nào ?

Giải:        

Bài 10 đường thẳng song song với một đường thẳng cho trước – Chương 1 Hình học SBT Toán 8 tập 1

Gọi K là trung điểm của cạnh AD.

ta có AD cố định nên điểm K cố định.

Trong ∆ ABD ta có:

IB = ID (tính chất hình bình hành)

KA = KD (theo cách vẽ)

nên KI là đường trung bình của ∆ ABD

⇒ KI = ({1 over 2})AB =({1 over 2}).2 = 1 (cm) (tính chất đường trung bình của tam giác)

B và C thay đổi thì I thay đổi luôn cách điểm K cố định một khoảng không đổi nên I chuyển động trên (K ; 1 cm)

The post Bài 10 đường thẳng song song với một đường thẳng cho trước – Chương 1 Hình học SBT Toán 8 tập 1 appeared first on Sách Toán – Học toán.

Goc hoc tap