Bài 6 Phép trừ các phân thức đại số – Sách bài tập Toán 8 tập 1

Bài 6 Phép trừ các phân thức đại số – Sách bài tập Toán 8 tập 1


Bài 24 trang 30 Sách bài tập Toán 8 tập 1

Làm tính nhân phân thức :

a. ({{3x – 2} over {2xy}} – {{7x – 4} over {2xy}})

b. ({{3x + 5} over {4{x^3}y}} – {{5 – 15x} over {4{x^3}y}})

c. ({{4x + 7} over {2x + 2}} – {{3x + 6} over {2x + 2}})

d. ({{9x + 5} over {2left( {x – 1} right){{left( {x + 3} right)}^2}}} – {{5x – 7} over {2left( {x – 1} right){{left( {x + 3} right)}^2}}})

e. ({{xy} over {{x^2} – {y^2}}} – {{{x^2}} over {{y^2} – {x^2}}})

f. ({{5x + {y^2}} over {{x^2}y}} – {{5y – {x^2}} over {x{y^2}}})

g. ({x over {5x + 5}} – {x over {10x – 10}})

h. ({{x + 9} over {{x^2} – 9}} – {3 over {{x^2} + 3x}})

Giải: a.  ({{3x – 2} over {2xy}} – {{7x – 4} over {2xy}})( = {{3x – 2} over {2xy}} + {{4 – 7x} over {2xy}} = {{3x – 2 + 4 – 7x} over {2xy}} = {{2left( {1 – 2x} right)} over {2xy}} = {{1 – 2x} over {xy}})

b. ({{3x + 5} over {4{x^3}y}} – {{5 – 15x} over {4{x^3}y}})( = {{3x + 5} over {4{x^3}y}} + {{15x – 5} over {4{x^3}y}} = {{3x + 5 + 15x – 5} over {4{x^3}y}} = {{18x} over {4{x^3}y}} = {9 over {2{x^2}y}})

c. ({{4x + 7} over {2x + 2}} – {{3x + 6} over {2x + 2}})( = {{4x + 7} over {2x + 2}} + {{ – left( {3x + 6} right)} over {2x + 2}} = {{4x + 7 – 3x – 6} over {2x + 2}} = {{x + 1} over {2left( {x + 1} right)}} = {1 over 2})

d. ({{9x + 5} over {2left( {x – 1} right){{left( {x + 3} right)}^2}}} – {{5x – 7} over {2left( {x – 1} right){{left( {x + 3} right)}^2}}})( = {{9x + 5} over {2left( {x – 1} right){{left( {x + 3} right)}^2}}} + {{7 – 5x} over {2left( {x – 1} right){{left( {x + 3} right)}^2}}})

( = {{9x + 5 + 7 – 5x} over {2left( {x – 1} right){{left( {x + 3} right)}^2}}} = {{4left( {x + 3} right)} over {2left( {x – 1} right){{left( {x + 3} right)}^2}}} = {2 over {left( {x – 1} right)left( {x + 3} right)}})

e. ({{xy} over {{x^2} – {y^2}}} – {{{x^2}} over {{y^2} – {x^2}}})( = {{xy} over {{x^2} – {y^2}}} + {{{x^2}} over {{x^2} – {y^2}}} = {{xy + {x^2}} over {{x^2} – {y^2}}} = {{xleft( {x + y} right)} over {left( {x + y} right)left( {x – y} right)}} = {x over {x – y}})

f. ({{5x + {y^2}} over {{x^2}y}} – {{5y – {x^2}} over {x{y^2}}})( = {{5x + {y^2}} over {{x^2}y}} + {{{x^2} – 5y} over {x{y^2}}} = {{yleft( {5x + {y^2}} right)} over {{x^2}{y^2}}} + {{xleft( {{x^2} – 5y} right)} over {{x^2}{y^2}}})

( = {{5xy + {y^3} + {x^3} – 5xy} over {{x^2}{y^2}}} = {{{x^3} + {y^3}} over {{x^2}{y^2}}})

g. ({x over {5x + 5}} – {x over {10x – 10}})( = {x over {5left( {x + 1} right)}} + {{ – x} over {10left( {x – 1} right)}} = {{2xleft( {x – 1} right)} over {10left( {x + 1} right)left( {x – 1} right)}} + {{ – xleft( {x + 1} right)} over {10left( {x + 1} right)left( {x – 1} right)}})

( = {{2{x^2} – 2x – {x^2} – x} over {10left( {x + 1} right)left( {x – 1} right)}} = {{{x^2} – 3x} over {10left( {x + 1} right)left( {x – 1} right)}})

h. ({{x + 9} over {{x^2} – 9}} – {3 over {{x^2} + 3x}})( = {{x + 9} over {left( {x + 3} right)left( {x – 3} right)}} + {{ – 3} over {xleft( {x + 3} right)}} = {{xleft( {x + 9} right)} over {xleft( {x + 3} right)left( {x – 3} right)}} + {{ – 3left( {x – 3} right)} over {xleft( {x + 3} right)left( {x – 3} right)}})

( = {{{x^2} + 9x – 3x + 9} over {xleft( {x + 3} right)left( {x – 3} right)}} = {{{x^2} + 6x + 9} over {xleft( {x + 3} right)left( {x – 3} right)}} = {{{{left( {x + 3} right)}^2}} over {xleft( {x + 3} right)left( {x – 3} right)}} = {{x + 3} over {xleft( {x – 3} right)}})


Bài 25 trang 30

Theo định nghĩa của phép trừ, khi viết

({A over B} – {C over D} – {E over F})  có nghĩa là ({A over B} + {{ – C} over D} + {{ – E} over F})

Áp dụng điều này để làm các phép tính sau :

a. ({1 over {3x – 2}} – {1 over {3x + 2}} – {{3x – 6} over {4 – 9{x^2}}})

b. ({{18} over {left( {x – 3} right)left( {{x^2} – 9} right)}} – {3 over {{x^2} – 6x + 9}} – {x over {{x^2} – 9}})

HD giải: a. ({1 over {3x – 2}} – {1 over {3x + 2}} – {{3x – 6} over {4 – 9{x^2}}})( = {1 over {3x – 2}} – {1 over {3x + 2}} + {{3x – 6} over {left( {3x + 2} right)left( {3x – 2} right)}})

(eqalign{  &  = {{3x + 2} over {left( {3x + 2} right)left( {3x – 2} right)}} + {{ – left( {3x – 2} right)} over {left( {3x + 2} right)left( {3x – 2} right)}} + {{3x – 6} over {left( {3x + 2} right)left( {3x – 2} right)}}  cr  &  = {{3x + 2 – 3x + 2 + 3x – 6} over {left( {3x + 2} right)left( {3x – 2} right)}} = {{3x – 2} over {left( {3x + 2} right)left( {3x – 2} right)}} = {1 over {3x + 2}} cr} )

b. ({{18} over {left( {x – 3} right)left( {{x^2} – 9} right)}} – {3 over {{x^2} – 6x + 9}} – {x over {{x^2} – 9}})( = {{18} over {{{left( {x – 3} right)}^2}left( {x + 3} right)}} + {{ – 3} over {{{left( {x – 3} right)}^2}}} + {{ – x} over {left( {x + 3} right)left( {x – 3} right)}})

(eqalign{  &  = {{18} over {{{left( {x – 3} right)}^2}left( {x + 3} right)}} + {{ – 3left( {x + 3} right)} over {{{left( {x – 3} right)}^2}left( {x + 3} right)}} + {{ – xleft( {x – 3} right)} over {{{left( {x – 3} right)}^2}left( {x + 3} right)}} = {{18 – 3x – 9 – {x^2} + 3x} over {{{left( {x – 3} right)}^2}left( {x + 3} right)}}  cr  &  = {{9 – {x^2}} over {left( {3 – {x^2}} right)left( {x + 3} right)}} = {{left( {3 – x} right)left( {3 + x} right)} over {left( {3 – {x^2}} right)left( {x + 3} right)}} = {1 over {3 – x}} cr} )


Bài 26 trang 31

Rút gọn biểu thức :

a. ({{3{x^2} + 5x + 1} over {{x^3} – 1}} – {{1 – x} over {{x^2} + x + 1}} – {3 over {x – 1}})

b. ({1 over {{x^2} – x + 1}} + 1 – {{{x^2} + 2} over {{x^3} + 1}})

c. ({7 over x} – {x over {x + 6}} + {{36} over {{x^2} + 6x}})

Giải câu 26:

a. ({{3{x^2} + 5x + 1} over {{x^3} – 1}} – {{1 – x} over {{x^2} + x + 1}} – {3 over {x – 1}})

(eqalign{  &  = {{3{x^2} + 5x + 1} over {left( {x – 1} right)left( {{x^2} + x + 1} right)}} + {{x – 1} over {{x^2} + x + 1}} + {{ – 3} over {x – 1}}  cr  &  = {{3{x^2} + 5x + 1} over {left( {x – 1} right)left( {{x^2} + x + 1} right)}} + {{{{left( {x – 1} right)}^2}} over {left( {x – 1} right)left( {{x^2} + x + 1} right)}} + {{ – 3left( {{x^2} + x + 1} right)} over {left( {x – 1} right)left( {{x^2} + x + 1} right)}}  cr  &  = {{3{x^2} + 5x + 1 + {x^2} – 2x + 1 – 3{x^2} – 3x – 3} over {left( {x – 1} right)left( {{x^2} + x + 1} right)}} = {{{x^2} – 1} over {left( {x – 1} right)left( {{x^2} + x + 1} right)}}  cr  &  = {{left( {x + 1} right)left( {x – 1} right)} over {left( {x – 1} right)left( {{x^2} + x + 1} right)}} = {{x + 1} over {{x^2} + x + 1}} cr} )

b. ({1 over {{x^2} – x + 1}} + 1 – {{{x^2} + 2} over {{x^3} + 1}})( = {1 over {{x^2} – x + 1}} + 1 + {{ – left( {{x^2} + 2} right)} over {left( {x – 1} right)left( {{x^2} – x + 1} right)}})

(eqalign{  &  = {{x + 1} over {left( {x + 1} right)left( {{x^2} – x + 1} right)}} + {{{x^3} + 1} over {left( {x + 1} right)left( {{x^2} – x + 1} right)}} + {{ – left( {{x^2} + 2} right)} over {left( {x + 1} right)left( {{x^2} – x + 1} right)}}  cr  &  = {{x + 1 + {x^3} + 1 – {x^2} – 2} over {left( {x + 1} right)left( {{x^2} – x + 1} right)}} = {{x + {x^3} – {x^2}} over {left( {x + 1} right)left( {{x^2} – x + 1} right)}} = {{xleft( {{x^2} – x + 1} right)} over {left( {x + 1} right)left( {{x^2} – x + 1} right)}} = {x over {x + 1}} cr} )

c. ({7 over x} – {x over {x + 6}} + {{36} over {{x^2} + 6x}})( = {7 over x} + {{ – x} over {x + 6}} + {{36} over {{x^2} + 6x}} = {{7left( {x + 6} right)} over {xleft( {x + 6} right)}} + {{ – {x^2}} over {xleft( {x + 6} right)}} + {{36} over {xleft( {x + 6} right)}})

(eqalign{  &  = {{7x + 42 – {x^2} + 36} over {xleft( {x + 6} right)}} = {{7x – {x^2} + 78} over {xleft( {x + 6} right)}} = {{13x + 78 – 6x – {x^2}} over {xleft( {x + 6} right)}}  cr  &  = {{13left( {x + 6} right) – xleft( {x + 6} right)} over {xleft( {x + 6} right)}} = {{left( {x + 6} right)left( {13 – x} right)} over {xleft( {x + 6} right)}} = {{13 – x} over x} cr} )


Bài 27 trang 31 Toán 8 tập 1

Nếu mua lẻ thì giá một bút bi là x đồng. Nhưng nếu mua từ 10 bút trở lên thì giá mỗi bút rẻ hơn 100 đồng. Cô Dung dùng 180 đồng để mua bút cho văn phòng.

Hãy biểu diễn qua x :

– Tổng số bút mua được khi mua lẻ ;

– Số bút mua được nếu mua cùng một lúc, biết rằng giá tiền một bút không quá 1200 đồng ;

– Số bút được lợi khi mua cùng một lúc so với khi mua lẻ.

Bài giải: – Số bút mua được khi mua lẻ là : ({{180000} over x}) (bút)

– Vì giá mỗi cây bút không quá 1200 đồng nên nếu mua cùng lúc thì số bút lớn hơn 10 và mua được là ({{180000} over {x – 100}}) (bút)

Số bút được lợi so với mua lẻ là : ({{180000} over {x – 100}} – {{180000} over x}) (bút)


Bài 28 trang 31

a. Chứng minh ${1 over x} – {1 over {x + 1}} = {1 over {xleft( {x + 1} right)}}$

b. Đố. Đố em tính nhẩm được tổng sau :

({1 over {xleft( {x + 1} right)}} + {1 over {left( {x + 1} right)left( {x + 2} right)}} + {1 over {left( {x + 2} right)left( {x + 3} right)}} + {1 over {left( {x + 3} right)left( {x + 4} right)}} + {1 over {left( {x + 4} right)left( {x + 5} right)}} + {1 over {x + 5}})

Giải bài 28 trang 31 SBT Toán 8 tập 1:

a. Biến đổi vế trái :

({1 over x} – {1 over {x + 1}} = {{x + 1} over {xleft( {x + 1} right)}} + {{ – x} over {xleft( {x + 1} right)}} = {{x + 1 – x} over {xleft( {x + 1} right)}} = {1 over {xleft( {x + 1} right)}})

Vế trái bằng vế phải, đẳng thức được chứng minh.

b. ({1 over {xleft( {x + 1} right)}} + {1 over {left( {x + 1} right)left( {x + 2} right)}} + {1 over {left( {x + 2} right)left( {x + 3} right)}} + {1 over {left( {x + 3} right)left( {x + 4} right)}} + {1 over {left( {x + 4} right)left( {x + 5} right)}} + {1 over {x + 5}})

( = {1 over x} – {1 over {x + 1}} + {1 over {x + 1}} – {1 over {x + 2}} + {1 over {x + 2}} – {1 over {x + 3}} + {1 over {x + 3}} – {1 over {x + 4}} + {1 over {x + 4}} – {1 over {x + 5}} + {1 over {x + 5}} = {1 over x})

Bài 6.1 trang 31 SBT Toán 8 tập 1

Thực hiện phép trừ

({{2x} over {x – 1}} – {x over {x – 1}} – {1 over {x – 1}}). Cách thực hiện nào sau đây là sai ?

A. ({{2x} over {x – 1}} – {x over {x – 1}} – {1 over {x – 1}} = left( {{{2x} over {x – 1}} – {x over {x – 1}}} right) – {1 over {x – 1}} = …;)

B. ({{2x} over {x – 1}} – {x over {x – 1}} – {1 over {x – 1}} = {{2x} over {x – 1}} – left( {{x over {x – 1}} – {1 over {x – 1}}} right) = …;)

C. ({{2x} over {x – 1}} – {x over {x – 1}} – {1 over {x – 1}} = {{2x} over {x – 1}} – left( {{x over {x – 1}} + {1 over {x – 1}}} right) = …;)

D. ({{2x} over {x – 1}} – {x over {x – 1}} – {1 over {x – 1}} = {{2x} over {x – 1}} + {{ – x} over {x – 1}} + {{ – 1} over {x – 1}} = ….)

Trả lời: Chọn B. ({{2x} over {x – 1}} – {x over {x – 1}} – {1 over {x – 1}} = {{2x} over {x – 1}} – left( {{x over {x – 1}} – {1 over {x – 1}}} right) = …;)Sai


Câu 6.2 trang 32 Sách bài tập (SBT) Toán 8 tập 1

Trong mỗi trường hợp sau hãy tìm phân thức Q thỏa mãn điều kiện :

a. ({1 over {{x^2} + x + 1}} – Q = {1 over {x – {x^2}}} + {{{x^2} + 2x} over {{x^3} – 1}})

b. ({{2x – 6} over {{x^3} – 3{x^2} – x + 3}} + Q = {6 over {x – 3}} – {{2{x^2}} over {1 – {x^2}}})

Giải:

a. ({1 over {{x^2} + x + 1}} – Q = {1 over {x – {x^2}}} + {{{x^2} + 2x} over {{x^3} – 1}})

(eqalign{  & Q = {1 over {{x^2} + x + 1}} – {1 over {x – {x^2}}} – {{{x^2} + 2x} over {{x^3} – 1}}  cr  & Q = {1 over {{x^2} + x + 1}} + {1 over {xleft( {x – 1} right)}} – {{{x^2} + 2x} over {left( {x – 1} right)left( {{x^2} + x + 1} right)}}  cr  & Q = {{xleft( {x – 1} right) + {x^2} + x + 1 – xleft( {{x^2} + 2x} right)} over {xleft( {x – 1} right)left( {{x^2} + x + 1} right)}}  cr  & Q = {{{x^2} – x + {x^2} + x + 1 – {x^3} – 2{x^2}} over {xleft( {x – 1} right)left( {{x^2} + x + 1} right)}} = {{1 – {x^3}} over {xleft( {{x^3} – 1} right)}} = {{ – left( {{x^3} – 1} right)} over {xleft( {{x^3} – 1} right)}}  cr  & Q =  – {1 over x} cr} )

b. ({{2x – 6} over {{x^3} – 3{x^2} – x + 3}} + Q = {6 over {x – 3}} – {{2{x^2}} over {1 – {x^2}}})

(eqalign{  & Q = {6 over {x – 3}} + {{2{x^2}} over {{x^2} – 1}} – {{2x – 6} over {{x^3} – 3{x^2} – x + 3}}  cr  & Q = {6 over {x – 3}} + {{2{x^2}} over {{x^2} – 1}} – {{2x – 6} over {left( {x – 3} right)left( {{x^2} – 1} right)}}  cr  & Q = {{6left( {{x^2} – 1} right) + 2{x^2}left( {x – 3} right) – left( {2x – 6} right)} over {left( {x – 3} right)left( {{x^2} – 1} right)}}  cr  & Q = {{6{x^2} – 6 + 2{x^3} – 6{x^2} – 2x + 6} over {left( {x – 3} right)left( {{x^2} – 1} right)}} = {{2{x^3} – 2x} over {left( {x – 3} right)left( {{x^2} – 1} right)}} = {{2xleft( {{x^2} – 1} right)} over {left( {x – 3} right)left( {{x^2} – 1} right)}}  cr  & Q = {{2x} over {x – 3}} cr} )

 

The post Bài 6 Phép trừ các phân thức đại số – Sách bài tập Toán 8 tập 1 appeared first on Sách Toán – Học toán.

Goc hoc tap