Câu 36 trang 163 Đại số và Giải tích 11 Nâng cao, Tìm các giới hạn sau :…

Tìm các giới hạn sau :. Câu 36 trang 163 SGK Đại số và Giải tích 11 Nâng cao – Bài 6. Một vài quy tắc tìm giới hạn vô cực

Tìm các giới hạn sau :

a.  (mathop {lim }limits_{x to + infty } {{{x^3} – 5} over {{x^2} + 1}})

b.  (mathop {lim }limits_{x to – infty } {{sqrt {{x^4} – x} } over {1 – 2x}})

Giải:

a.

(eqalign{
& mathop {lim }limits_{x to + infty } {{{x^3} – 5} over {{x^2} + 1}} = mathop {lim }limits_{x to + infty } {x}{{{x^2}left( {1 – {5 over {{x^3}}}} right)} over {{x^2}left( {1 + {1 over {{x^2}}}} right)}} cr
& = mathop {lim }limits_{x to + infty } x.{{1 – {5 over {{x^3}}}} over {1 + {1 over {{x^2}}}}} = + infty cr
& text{vì},mathop {lim }limits_{x to + infty } x = + infty ,text{và},mathop {lim }limits_{x to + infty } {{1 – {5 over {{x^3}}}} over {1 + {1 over {{x^2}}}}} = 1 > 0 cr} )

b.

Với mọi (x

Vì (mathop {lim }limits_{x to – infty } sqrt {1 – {1 over {{x^3}}}} = 1,mathop {lim }limits_{x to – infty } left( {{1 over {{x^2}}} – {2 over x}} right) = 0,text{ và },{1 over {{x^2}}} – {2 over x} > 0) với mọi (x

Nên  (mathop {lim }limits_{x to – infty } {{sqrt {{x^4} – x} } over {1 – 2x}} = + infty )

Goc hoc tap