Giải SBT Bài 49 trang 63, 64 Sách bài tập Hình học lớp 12 Nâng cao – Chương 2


Cho hình nón đỉnh S có bán kính đáy R,

Cho hình nón đỉnh S có bán kính đáy R, góc ở đỉnh là (2alpha ,;{45^0}

1) Tính diện tích xung quanh và thể tích hình nón.

2) Tính diện tích thiết diện do mp(P) cắt hình nón theo hai đường sinh vuông góc với nhau.

3) Xét hai điểm A, B thay đổi trên đáy sao cho góc giữa mp(SAB) và mặt đáy hình nón bằng (beta; (beta  SI ( I là trung điểm của AB) luôn thuộc một hình nón cố định.

Giải

1)

Ta có (SM = {{OM} over {sin alpha }} = {R over {sin alpha }})

(SO = Rcot alpha .)

Diện tích xung quanh của hình nón là

({S_{xq}} = pi R.{R over {sin alpha }} = {{pi {R^2}} over {sin alpha }}.)

Thể tích khối nón là

(V = {1 over 3}pi {R^2}.Rcot alpha  = {1 over 3}pi {R^3}cot alpha .)

2) Giả sử (P) cắt hình nón theo thiết diện SMN và (SM bot SN,) khi đó diện tích thiết diện là

({S_1} = {1 over 2}SM.SN = {{{R^2}} over {2{{sin }^2}alpha }}.)

3)

Với I là trung điểm của AB thì (widehat {SIO} =beta ,)(OI = SOcot beta  = R.cot alpha .cot beta .)

Vậy điểm I thuộc đường tròn tâm O bán kính (R.cot alpha .cot beta ) trong mặt phẳng chứa đáy hình nón.

SI quay quanh S và dựa vào đường tròn tâm O, bán kính (R.cot alpha .cot beta ) trong mặt phẳng chứa đáy hình nón đã cho nên SI thuộc một hình nón cố định với đường cao SO, đường tròn đáy của hình nón này là đường tròn đã nêu trên.

Bài tiếp theo

 

The post Giải SBT Bài 49 trang 63, 64 Sách bài tập Hình học lớp 12 Nâng cao – Chương 2 appeared first on Học giải bài tập.

Goc hoc tap